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Angular momentum
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In classical physics, the moment of linear momentum about an axis. A point particle with mass m and

velocity v has linear momentum p = m v . Let r be an instantaneous position vector that locates the particle from

an origin on a specified axis. The angular momentum L can be written as the vector cross-product in Eq. (1) The

illustration shows the geometrical meaning of this equation.

Image of Equation 1 (1)

See also: CALCULUS OF VECTORS; MOMENTUM.

The time rate of change of the angular momentum is equal to the torque N. A rigid body satisfies two

independent equations of motion (the dynamical equations) given by Eqs. (2) and (3),

Image of Equation 2
(2)

Image of Equation 3
(3)

where d

∕dt
denotes the rate of change, the derivative with respect to time t. Only Eq. (1) is required for a point

particle. Equation (2) indicates that a rigid body acts as a point particle located at its center of mass. The motion

of the center of mass depends upon the net force F, which is the vector sum of all applied forces. Equation (3)

gives the angular motion about the center of mass. The case of statics occurs when the net force and net torque

both vanish. See also: STATICS; TORQUE.
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Unlabelled imageGeometrical definition of angular momentum. If we choose a reference point and draw a line R from it to a
moving body, then the line R and the velocity v of the body of mass m define a plane. The angular momentum is
a vector that lies perpendicular to this plane. If the momentum of the body is p = mv and the line R is a vector r,
then the magnitude of the angular momentum L is pr sin 𝜃.
Vectors and pseudovectors

Given the definition of angular momentum in Eq. (1), although it has three components, it is not a vector. The

parity transformation π transforms vectors such as r and p according to Eqs. (4).

Image of Equation 4a (4a)

Image of Equation 4b (4b)

Thus, π ⋅ L → + L, so that L is called a pseudovector or axial vector. Mathematically, these quantities are called

tensors of odd relative weight. Examples of pseudovectors include angular momentum, torque, and magnetic

fields. Two or more pseudovectors are combined by adding their components, so that the total angular

momentum is the sum of the angular momenta of the individual particles.

Among the fundamental particles, the photon field is a massless vector field, the rho (ρ) meson is a vector field,

and the a,1 meson is a pseudovector field. See also: ELEMENTARY PARTICLE; PARITY (QUANTUM MECHANICS).
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Rigid-body motion

To study the nonrelativistic mechanics of a rigid body made up of N particles, it is convenient to write the

instantaneous velocity v,α of the α-th particle in terms of angular velocity ω as v,α = ω × r,α. For this system, Eq. (1)

becomes Eq. (5),

Image of Equation 5

(5)

where I is the moment of inertia tensor. The moment of inertia tensor can be written in matrix form as Eq. (6).

Representative components of this tensor are given by Eqs. (7).

Image of Equation 6

(6)

Image of Equation 7a

(7a)

Image of Equation 7b

(7b)

Since I is symmetric, it can always be diagonalized and expressed in principal axis (or symmetry axis) form, I,P A =
diag (I,1, I,2, I,3), and in this form it is constant in time: İ,P A= 0. The Euler angle coordinates (α, β, γ ) are useful

because they can be used to rotate a rigid body into its principal axis frame. See also: EULER ANGLES; MOMENT OF

INERTIA; ROTATIONAL MOTION.

When all of the forces that act on a system are conservative (that is, ∇ × F ≡ O), a potential energy function V(r)

exists for which F = −∇V(r). Consider a rigid body of mass M and inertia tensor I subject to two conservative

forces F,1 = −∇,R V,1(R) and F,2 = −∇,α,0 V,2(α,0), where R is the position vector of the center of mass, and α,0 = (α,

β, γ ) are moment-arm-weighted Euler angles. The quantities ∇,R and ∇,α,0 are gradient operators. The equations of
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motion (2) and (3) become Eqs. (8) and (9).

Image of Equation 8 (8)

Image of Equation 9 (9)

Using I,P A and writing out Eq. (9) in component form in the rotating principal-axis frame yields Eqs. (10).

Image of Equation 10a (10a)

Image of Equation 10b (10b)

Image of Equation 10c (10c)

See also: ENERGY; RIGID-BODY DYNAMICS.

Conservation

A symmetry is a transformation that leaves a physical system unchanged. A physical quantity is called invariant

under a transformation if it remains the same after being transformed. For example, the solutions to Eqs. (2) and

(3), or equivalently Eqs. (8) and (9), are invariant under change of the coordinate origin or orientation of the i, j,

and k axes. The freedom to choose any orientation of coordinate axis is called rotational invariance, because one

choice of axes can be rotated into another.

In physics, the rotational invariance follows from the isotropy and homogeneity of space that has been

experimentally established to high accuracy. The diagonalization transformation I → I,P Ais carried out by rotating

the axes, and thus is a consequence of rotational invariance. The principal axes of a rigid body are called the

symmetry axes because their mechanical description is simplest there. (Rotational invariance says that the

mechanics can be solved in any orientation of the axes but not that an arbitrary orientation is simplest.)
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The study of symmetry shows that one of the deepest relations in physics is that between dynamics and

conservation. A physical quantity B is conserved if Eq. (11)

Image of Equation 11
(11)

is satisfied; that is, B is constant in time although it may vary in space. Noether’s theorem states that if a physical

system is invariant under a continuous symmetry, a conservation law exists, provided that the observable in

question decreases rapidly enough at infinity. Thus, when the force is zero everywhere (the system is invariant

under translation in space), the linear momentum is conserved. If the torque is zero everywhere (the system is

invariant under rotation), the angular momentum is conserved. If the system is invariant under translations in

time, the total energy is conserved. The converse to Noether’s theorem is false, as conserved quantities do not

imply continuous symmetries. For example, the parity transformation π of Eqs. (4) can be conserved but is not

continuous.

The set of all three-dimensional rotations form a group called SO(3): S for special (det = +1), O for orthogonal

(length-preserving), and 3 for the space dimension. The set of 2 × 2 complex, unitary (length-preserving) special

transformations is called SU(2). There is a 2:1 homorphism of SU(2) → SO(3), and SU(2) is called the covering

group of SO(3).

Angular momentum is important in the evolution of celestial objects. The shapes of these bodies and collections

of these bodies, spiral galaxies for instance, follow from the space-time variation of their torques. There is a

puzzling problem along these lines: If the universe can rotate, it is not clear why it rotates so slowly; that is, why

the anisotropics are so small. A proposed solution is based on the hypothesis of an inflationary epoch in the very

early universe, about 10,−35 s after the big bang. See also: BIG BANG THEORY; CONSERVATION OF ENERGY; CONSERVATION

OF MOMENTUM; COSMOLOGY; SYMMETRY LAWS (PHYSICS); UNIVERSE.

Quantum angular momentum

Quantum mechanics has a richer and more complicated structure than classical physics. Because of this, the

relationship between symmetry and conservation is even more useful. Whereas in classical physics the

observables and states coincide, in quantum mechanics the states of the system correspond to probability

amplitudes ψ and the observables A to self-adjoint operators (hermitian operators with suitable boundary

conditions). According to the Heisenberg uncertainty principle, all observables cannot be simultaneously known,

rather only those that commute. Two commuting self-adjoint operators can be diagonalized by a single unitary

transformation. The complete set of commuting observables specifies the maximum amount of sharp information

possible about a quantal system. The time dependence of a state, represented in x-space, where x is the position
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coordinate, as ψ(x, t), is given by the Schrödinger equation (12),

Image of Equation 12

(12)

where Ĥ is the system hamiltonian (energy) operator and � = 1.05 × 10,−34 joule-second and is Planck’s constant

divided by 2π . See also: NONRELATIVISTIC QUANTUM THEORY; QUANTUM MECHANICS.

Rotational invariance under SO(3) transformations in quantum mechanics implies the angular momentum

commutation relations for a single particle given in vector form by Eq. (13).

Image of Equation 13 (13)

Thez component of this equation can be written as Eq. (14),

Image of Equation 14 (14)

and the x and y components are expressed in similar fashion, where [A, B] is the commutator of A and B, defined

by Eq. (15).

Image of Equation 15 (15)

The quantum-mechanical momentum J is the most general observable satisfying Eq. (13). The orbital angular

momentum L = i� r × ∇, where ∇ is the gradient operator, is a special case of a quantum-angular momentum.

The total angular momentum J = J,x i + J,y j + J,z k has squared length J,2 = J,x
,2 + J,y

,2 + J,z
,2. It is straightforward to

use the operator identity [A,2,B] = A[A,B] + [A,B]A together with Eq. (13) to show that Eq. (16)

Image of Equation 16 (16)

is satisfied for i = x, y, z. An inspection of Eqs. (13) and (16) shows that the angular momentum complete set of

commuting observables is { J,2, J,i}, where any single component J,i can be simultaneously diagonal with J,2.

Conventionally J,z is chosen as the diagonal component, and J,2 is called the Casimir operator of SO(3). The two

nonself-adjoint ladder operators J,± = J,x ± J,yare useful for determining the properties of angular momentum states.
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Let ψ( J, M, r) be a simultaneous eigenfunction of the operators J,2 and J,z with eigenvalues λ and μ, so that Eqs.

(17) and (18)

Image of Equation 17 (17)

Image of Equation 18 (18)

are satisfied. The variable r in ψ stands for all other observables which commute with J,2 and J,z. Repeated use of

the angular momentum commutation relations of the operators J,+ and J,2 proves that λ = J( J + 1)�,2 and that μ =
M�, where M = −J, −J + 1, . . . , J − 1, J for each value of J. Further, J = n∕2, where n is a positive integer, so that

0, 1∕2, 3√
2
,,3∕,2, 1, 5√

2
,,5∕,2, . . . are the allowed values of total angular momentum. The eigenfunctions for

half-odd-integer values of total angular momentum are called spinors. A value S of spin, together with S,z, labels

intrinsic spin states. Spinors are new features of rotational invariance. They have the surprising property of

changing sign under an SO(3) rotation through 2π radians, R(2π); that is, Eq. (19) is satisfied.

Image of Equation 19 (19)

The states ψ( J, M, r) can be spinor-valued since measured probability densities depend only upon |ψ(J, M, r)|,2

dV (where dV is a volume element), whereas the observables must be tensors to have sensible classical limits.

The doublet Zeeman splitting of an unpaired electron in an external magnetic field is an indication that the

electron has this strange internal structure. Thus, J = L + S is the total angular momentum. See also: SPIN

(QUANTUM MECHANICS).

Quantum addition of angular momenta

The discussion above gives the properties of a single angular momentum. Two angular momenta, J,1 and J,2, are

called independent if all components of one commute with all components of the other. From the preceding

discussion, the sets of eigenfunctions ψ( J,1, M,1, r) and ψ( J,2, M,2, r) can be determined. Let J = J,1 + J,2. Then the

eigenfunction ψ( J, M, r) can be expressed as a linear combination of the ψ( J,1, M,1, R ) and ψ( J,2, M,2, r ) by Eq.

(20),

Image of Equation 2

(20)
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where C( J,1 J,2 J, M,1 M,2) is the Wigner coefficient (often erroneously called the Clebsch-Gordon coefficient). T

summation is over values of M,1 and M,2 such that M = M,1 + M,2, and J must have one of the set of values J = J,1

J,2, J,1 + J,2 − 1.

The Wigner coefficients play another important role in the Wigner-Eckart theorem. Let T( JM ) be a family of

tensor operators with angular momentum JM, and consider the quantum matrix elements j,
′
m,′ |T( JM )|jm.

These matrix elements represent transition probability amplitudes from quantum state jm to state jm,′ caused

T(JM ). The Wigner-Eckart theorem states that these matrix elements can be expressed by Eq. (21),

Image of Eq(

where j,
′

|T( J )| j? is the reduced matrix element and is independent of mMm,′ . The angular momentum

conservation is contained in the Wigner coefficient; the details of the particular operator T are contained only

the reduced matrix element.

The operator T in atomic spectroscopy is a perturbation hamiltonian from an incident electromagnetic wave

drives atomic transitions. Thus, the Wigner-Eckart theorem, through the Wigner coefficients, determines whic

transitions vanish, that is, the selection rules governing the process. Much of atomic spectroscopy follows fro

the rotational symmetry, or the quantum theory of angular momentum. See also: ATOMIC STRUCTURE AND SPECTR

SELECTION RULES (PHYSICS).

Brian De Facio, John L. Sa
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