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Conduction (heat) 

Contributed by: Warren H. Giedt 

Publication year: 2014 
The flow of thermal energy through a substance from a higher- to a lower-temperature region. Heat 

conduction occurs by atomic or molecular interactions. Conduction is one of the three basic methods of heat 

transfer, the other two being convection and radiation. See also: CONVECTION (HEAT) ; HEAT RADIATION ; HEAT TRANSFER . 

Steady-state conduction is said to exist when the temperature at all locations in a substance is constant with time, 

as in the case of heat flow through a uniform wall. Examples of essentially pure transient or periodic heat 

conduction and simple or complex combinations of the two are encountered in the heat-treating of metals, air 

conditioning, food processing, and the pouring and curing of large concrete structures. Also, the daily and yearly 

temperature variations near the surface of the Earth can be predicted reasonably well by assuming a simple 

sinusoidal temperature variation at the surface and treating the Earth as a semi-infinite solid. The widespread 

importance of transient heat flow in particular has stimulated the development of a large variety of analytical 

solutions to many problems. The use of many of these has been facilitated by presentation in graphical form. 

For an example of the conduction process, consider a gas such as nitrogen which normally consists of diatomic 

molecules. The temperature at any location can be interpreted as a quantitative specification of the mean kinetic 

and potential energy stored in the molecules or atoms at this location. This stored energy will be partly kinetic 

because of the random translational and rotational velocities of the molecules, partly potential because of internal 

vibrations, and partly ionic if the temperature (energy) level is high enough to cause dissociation. The flow of 

energy results from the random travel of high-temperature molecules into low-temperature regions and vice 

versa. In colliding with molecules in the low-temperature region, the high-temperature molecules give up some 

of their energy. The reverse occurs in the high-temperature region. These processes take place almost 

instantaneously in infinitesimal distances, the result being a quasi-equilibrium state with energy transfer. The 

mechanism for energy flow in liquids and solids is similar to that in gases in principle, but different in detail. 

Fourier equation 

The mathematical theory as well as the practical calculation of heat conduction is based on a macroscopic 

interpretation, as contrasted to the basic microscopic mechanism just described. From a physical point of view, it 

is reasoned that the steady heat flow from a surface ( Fig. 1 ) at temperature t , 1 to a parallel surface at t , 2 is directly 

proportional to ( t , 1 − t , 2 ), the area A normal to the direction of flow, and the time of flow τ , and inversely 

proportional to the distance l between the two planes. These factors are modified by a coefficient κ accounting 
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Image of 1 Fig. 1 Heat flow by conduction. 
for the heat-conducting nature of the particular substance between the two planes. Thus, the heat flow Q (in 

British thermal units, for example) is given by Eq. (1). 

Image of Equation 1 

( 1 ) 

In terms of the time rate of flow q = Q ∕ τ through an infinitesimally thin layer dx , in which the temperature 

change is dt , this becomes Eq. (2). 

Image of Equation 2 

( 2 ) 

The minus sign is conventionally included to make q positive when heat flows in the increasing direction of x , 

since dt ∕ dx is then negative. Although this equation was first proposed by J. Biot, it is named after J. Fourier in 

honor of Fourier’s extensive contributions to the theory of heat conduction. 
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Thermal conductivity 

The coefficient κ in Eqs. (1) and (2), called the thermal conductivity, is an important property of matter. It 

accounts for the heatconducting ability of a substance, and depends not only on the particular substance 

involved, but also on the state of that substance. The Fourier equation is essentially a definition of κ which ( Fig. 

1 ) can be interpreted as the rate of heat flow per unit of area normal to the direction of flow when a unit 

temperature difference exists in unit length. Thus from Eq. (2) is derived Eq. (3), 

Image of Equation 3 

( 3 ) 

where κ is seen to have the dimensions of a heat rate per unit area and per unit of temperature gradient. In the 

cgs system, it can be expressed in cal ∕ (s) ⋅ (cm 
, 2 )( ◦C ∕ cm), which is equivalent to cal ∕ (s)(cm)( ◦C). In engineering, 

the units most frequently used are Btu ∕ (h)(ft)( ◦F). 

Considerable progress has been made in the interpretation of thermal properties from theories of matter. This is 

particularly true for gases, where theory involving intermolecular forces has yielded very accurate results. The 

process of heat conduction in liquids is believed to be similar to that of sound transmission. In dielectric solids, 

energy is transmitted primarily by means of waves traveling through the atomic lattice; in metals, the electrons 

behave like an electron gas and provide for energy transfer as well as electrical conduction. This is the basis of 

the Widemann-Franz law, which states that κ∕ σT = constant ( σ is the electrical conductivity and T the absolute 

temperature). See also: INTERMOLECULAR FORCES ; KINETIC THEORY OF MATTER ; THERMAL CONDUCTION IN SOLIDS . 

For materials occurring as crystalline or amorphous solids, the general trend of κ at atmospheric pressure 

throughout the three physical states is as shown in Fig. 2 . The numerical value at the maximum, which occurs 

near absolute zero in crystalline substances, is comparatively high. For example, the κ of a copper crystal at 20 K 

has been found to be 7050 Btu ∕ (h)(ft)( ◦F)—more than 30 times its value at room temperature. Thermal 

conductivity of solids is discussed in a later section. 

Because of the complexity and incomplete understanding of the mechanisms responsible for heat conduction, 

values of κ are usually determined experimentally. Results for typical gases, liquids, and solids in appropriate 

temperature ranges are shown in Fig. 3 . The effect of pressure is significant primarily in gases. 

Dif fer ential equation of conduction 

The evidence of heat flow by conduction through a substance is the variation of the temperature with location 

and time. If the temperature as a function of the space coordinates and time is known or can be determined, the 

heat flow at any location and in any direction can be specified by appropriate differentiation. A given problem is 
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Image of 2 Fig. 2 General variation of thermal conductivity with temperature throughout the three physical states. ( After L. 
S. Kowalczyk, Trans. ASME, 77:1021–1035, 1955 ) 

Image of 3 Fig. 3 Thermal conductivities of some typical examples of gases, liquids, and solids. ◦C = ( ◦F − 32) ∕ 1.8. 
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Image of 4 Fig. 4 Diagram of the heat flow through an elemental volume in a homogeneous medium. 

 of Equat
normally attacked by solving the differential equation governing the temperature distribution in a homogeneous 

substance and making this solution fit the prescribed initial or boundary conditions. This differential equation, 

essentially an expression of the first law of thermodynamics applied to the heat flow, is derived by making a heat 

balance on an elemental volume in a medium ( Fig. 4 ). 

Considering first the x direction, the net heat flow into the element in time Δτ is the difference between the 

flowing in on the left minus that flowing out on the right; or, Eq. (4) 

Image

( 4 ) 

applying Eq. (1), is obtained. Accounting for the variation of κ with temperature is extremely difficult and may 

make the analytical solution of a problem impossible. Because of this, it is customary to use an appropriate 

average value which is regarded as constant. Equation (4) can then be rearranged to read as Eq. (5 a ), which, as 
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a 
Δx → 0, becomes Eq. (5 b ). 

Image of Equation 5

( 5 a) 

Image of Equation 5b 

( 5 b) 

Similar expressions apply for the y and z directions. Heat generated within the element at a uniform rate G per 

unit volume and time would add an amount G Δx Δy Δz Δτ . 

The net heat flow into the element would be manifest as stored energy and would be equal to notation (6), 

Image of Equation 6 
( 6 ) 

where w is the specific weight (weight per unit volume) of the medium, c its specific heat, and Δt the 

temperature rise in the time increment Δτ . Equating the net flow into the element to that stored and letting Δx , 

Δy , Δz , and Δτ → 0 leads to Eq. (7). 

Image of Equation 7 

( 7 ) 

When no heat source is present, Eq. (7) becomes Eq. (8). 

Image of Equation 8 

( 8 ) 

The ratio κ∕ wc = α is defined as the thermal diffusivity, and is the significant thermal property of a material for 

transient heat flow ( Fig. 5 ). Equation (8) will be recognized as the equation governing a potential field written in 

terms of temperature. Similar equations are satisfied by other potential field phenomena, such as electricity, 

magnetism, diffusion, and ideal fluid flow. Because of this, solutions to problems in one field are applicable to 
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Image of 5 Fig. 5 Thermal diffusivities of some materials. ◦C = ( ◦F − 32) ∕ 1.8. 
analogous systems in the others. Also, an experimental solution of a problem in one field may be obtained from 

an analogous system in another. See also: POTENTIALS . 

Steady-state conduction 

When the temperature at all locations is constant with time or, mathematically, when ∂ t ∕∂ τ = 0, steady-state 

conduction exists. Many important practical problems fall in this category, the most familiar being heat flow 

through a wall and a hollow cylinder. Referring to Fig. 1 and assuming no heat generation within the wall, Eq. (8) 

reduces to Eq. (9). 

Image of Equation 9 

( 9 ) 

The terms ∂ , 2 t ∕∂ y , 2 and ∂ , 2 t ∕∂ z , 2 are eliminated, since t is considered to vary only with x . The desired 

temperature distribution is obtained by integrating Eq. (9) twice and evaluating the two constants from the 
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Image of 6 Fig. 6 Steady-state conduction. Diagrams show the temperature distribution for steady radial heat flow through 
a circular cylinder wall. 
known temperatures at x = 0 and x = 1 . This leads to Eq. (10). Application of Eq. (2) to obtain q yields Eq. (11). 

Image of Equation 10 

( 10 ) 

Image of Equation 11 

( 11 ) 

In the case of steady radial heat flow through a cylindrical wall ( Fig. 6 ), Eq. (2) is applicable to any imaginary thin 

annular ring in the wall; thus Eq. (12) 

Image of Equation 12 

( 12 ) 

is obtained. Integration from t = t , 1 to t , and r , 1 to r leads to Eq. (13), 

Image of Equation 13 

( 13 ) 

which indicates that the effect of the increasing area for heat flow is to produce a logarithmic variation in the 

temperature, as shown by the curve in the left part of Fig. 6 . 
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Heat flow through a cylindrical wall is usually expressed in the same form as Eq. (11), written as Eq. (14). Solving 

Eq. (13) for q and substituting in Eq. (14) 

Image of Equation 14 

( 14 ) 

shows that the appropriate value for A , m must be as given in Eq. (15), 

Image of Equation 15 

( 15 ) 

which is called the logarithmic-mean area. 

If the rate of heat flow and the inner and outer temperatures of a plane wall or hollow cylinder are measured 

during steady heat conduction, values of κ can be determined from Eq. (11) or Eq. (14). Because of the simplicity 

of the equations and the physical systems, most devices for measuring thermal conductivity are based on these 

types of heat flow. 

Interface resistance 

Now consider steady-state heat flow through a wall composed of two or more layers of material, each with 

different uniform thermal properties. If the surfaces of the various layers are very smooth and in very good 

contact with each other, the temperature distribution will be continuous. At any interface ( Fig. 7 a ), since q is 

constant, Eq. (16) 

Image of Equation 16 

( 16 ) 

holds. This shows that there is a discontinuity in the temperature gradient due to the change in κ . 

Actual surfaces, even polished ones, are not smooth but have small projections and depressions. Consequently, 

when two surfaces are brought together, contact occurs primarily at projecting spots, as illustrated in Fig. 7 b . 

The resulting contact area is only a small fraction of the nominal contact area. Plastic deformation at the points of 

contact of one or both materials usually occurs with the application of force to hold them together. Heat flows 

through both the small contact areas and the substance (usually a gas or liquid) filling the voids between the 

contacting protuberances. 
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Image of 7 Fig. 7 Temperature distribution through composite wall. ( a ) With perfect interface contact. ( b ) For typical actual 
surfaces. 
The impairment to the heat-flow path caused by this imperfect contact is referred to as contact resistance. This is 

determined by extrapolating the measured temperature distribution in each material to the apparent interface 

location ( Fig. 7 b ). The quotient of the resulting temperature difference Δt , i thus determined and the heat flux 

defines an interface resistance R , i = Δt , i ∕ q. R , i depends on the roughnesses of the surfaces, the gas or liquid filling 

the voids, and the contact pressure. In general, the effect of contact resistance is significant only at low (for 

example, below 100 lb ∕ in. , 2 or 700 kPa) interface pressures. 

Internally generated heat 

Conduction of heat generated internally occurs, for example, in the fuel elements used in nuclear reactors. Many 

of these elements are essentially long, flat plates over which a coolant flows. It is usually necessary to clad the 

fissionable material to prevent corrosion and keep radioactive particles from entering the coolant ( Fig. 8 ). This 

cladding is undesirable from a heat-transfer standpoint, and is made as thin as possible and of the best adaptable 

heat-conducting material. Consequently, the temperature drop through it is usually small. See also: NUCLEAR 

REACTOR . 

To illustrate the effect of the heat generation, assume that it is uniform with space and time in the radioactive 

material of Fig. 8 [that is, G in Eq. (7) is constant]. Heat flow from the ends of the elements and parallel to the 

flow direction of the coolant is negligible. 

Therefore, Eq. (7) reduces to Eq. (17). 

Image of Equation 17 

( 17 ) 
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Image of 8 Fig. 8 Temperature distribution in reactor fuel plate. 
A solution for t is obtained by integrating twice and applying the boundary conditions (considering cooling to be 

the same on each side) dt ∕ dx = 0 at x = 0 and t = t , 0 at x = l . The result shows the temperature distribution to be 

parabolic, as in Eq. (18). 

Image of Equation 18 

( 18 ) 

The rate of heat transfer to the coolant is obtained by differentiating Eq. (18) with respect to x , evaluating at x = 

l , and substituting in Eq. (2). 

Since the heat generation rate is frequently dependent on the temperature, G will be more complex, possibly 

making an analytical solution impossible. Numerical methods of solution are then employed. 

Periodic and transient conduction 

These are the two kinds of non-steady-state heat flow. Periodic means a quasi-steady-state condition in which the 

temperature and heat flow at any location in a body vary continuously with time, but pass through the same 

series of values in a definite period of time, τ, 0 . A transient state results when the heat flow at any location is 
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momentarily or permanently changed. The duration of the transient period is the time required for the system to 

return to its original or a new steady-state condition. A transient change may be superimposed on a periodic 

variation. 

Restricting consideration to examples in which no heat generation is present, the fundamental differential 

equation to be satisfied for either periodic or transient heat flow is Eq. (8). An interesting application is the 

temperature variation in the Earth due to the diurnal temperature variation, or to a sudden change in surface 

temperature. Equation (8) reduces in this case to Eq. (19). 

Image of Equation 19 

( 19 ) 

Assume the existence of a mean temperature of the Earth which is invariable with depth and that its surface 

temperature has been varying in a steady periodic manner long enough so that the original transient state due to 

starting the cyclic surface temperature has reached a steady periodic condition. If the surface temperature 

variation is given by Eq. (20), the appropriate solution to Eq. (19) is given by Eq. (21). 

Image of Equation 20 

( 20 ) 

Image of Equation 21 

( 21 ) 

This result shows that the temperature distribution looks like a wave traveling into the medium with the 

amplitude decreasing as the factor e 
, − 

√ √ π
2γ x 

. Computation of the heat flow by determining ( ∂ t ∕∂ t ) , x=0 from Eq. (21) 

indicates that heat flows in during one-half of the period τ, 0 and out during the other half. 

Calculations of the temperature distribution in the Earth over an 8-h interval, using Eq. (21), are shown in Fig. 9 . 

In this case the surface temperature varied from 29 to 41 
◦F ( − 1.6 to 5.0 

◦C) over a 24-h period; the diffusivity of 

the soil was 0.0065 ft , 2 ∕ h (6.0 × 10 
, −4 m 

, 2 ∕ h). 

An illustration of a transient state is the temperature variation resulting from a sudden change of magnitude t , 0 in 

the temperature at the surface of the Earth. When the initial temperature throughout is uniform and taken as the 
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Image of 9 Fig. 9 Temperature distribution in the ground for a daily periodic surface variation. ◦C = ( ◦F − 32) ∕ 1.8. 

ation 23
datum, the applicable solution to Eq. (19) is given by Eq. (22). 

Image of Equation 22 

( 22 ) 

If a body of soil in the Earth’s surface is at a uniform temperature of 40 
◦F (4.4 

◦C) and the surface temperature 

suddenly drops to 20 
◦F ( − 6.7 

◦C), Eq. (22) can be applied to determine the depth at which the temperature will 

have dropped to freezing (32 
◦F or 0 

◦C) in 12 h. Taking α = 0.0065 ft , 2 ∕ h, t = 32 
◦F after 12 h is found to occur at x 

= 0.27 ft = 3.2 in. = 8.2 cm. 

Variable thermal conductivity 

Most materials are sufficiently homogeneous so that their thermal properties are independent of position. 

Assuming that they vary only with temperature, the heat balance on the element of Fig. 4 leads to Eq. (23). Upon 

carrying out the indicated differentiation, Eq. (23) becomes Eq. (24). By introducing a new variable 𝜃 called the 

conductivity potential, notation (25), Eq. (24) can be simplified to Eq. (26). 

Image of Equ

( 23 ) 
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Im

 

ation 29
( 24 ) 

Image of Equation 25 

( 25 ) 

Image of Equation 26 

( 26 ) 

Equation (26) has exactly the same form as Eq. (7). In many cases the variation of α with temperature ( Fig. 5 ) is 

less than that of κ so that a mean constant value may be selected. This is true, for example, of metals at 

temperatures near absolute zero. In such cases, if G is not a function of t (or no heat source is present), solutions 

for constant α will apply with 𝜃 replacing t , provided that the boundary conditions are specified in terms of t or 

κ( ∂ t ∕∂ n ) where n represents the variables x, y, z . 

The utility of the conductivity potential is demonstrated in the calculation of the heat leak to a liquid-nitrogen 

tank through a support rod. Consider steady-state conditions with the exposed end of the rod at 300 K and the 

other at 77.3 K. Also assume there are no losses from the side of the rod which is 1 cm 
, 2 in cross section, is 15 cm 

long, and is made of stainless steel (for which κ decreases from 0.15 at 300 K to 0.08 W ∕ cm K at 77.3 K). At any 

location q is given by Eq. (27). Since q is constant, Eq. (28) holds. Then Eqs. (29) follows. 

Image of Equation 27 

( 27 ) 

Image of Equation 28

( 28 ) 

Image of Equ
( 29 ) 
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