
AccessScience from McGraw-Hill Education
www.accessscience.com

Page 1 of 9

Software engineering

Contributed by: Pranshu Gupta

Publication year: 2019
Key Concepts

• Software is typically produced through a progression of controlled steps, including requirements

gathering, design, coding, testing, debugging, deployment, and maintenance.

• An important component of software engineering is documentation of the final system, which

substantiates the needs of the system and describes how it operates.

• Software engineering tools include programming languages, Unified Modeling Language (UML), and

Model-Driven Architecture (MDA).

• Waterfall, agile, and several other popular models exist for approaching the software development

process, all of which have as their goal a correctly working system that satisfies all user requirements and

is easy to use and maintain.

The production of software through a progression of disciplined and controlled steps. As the need for

complex, real-time, and life-critical software proliferates, there is a demand for an effective software development

process that guarantees the correctness and quality of the software produced. To meet this challenge, the

computer science community has developed a process called software engineering that aims to build software

that meets all the specifications for its intended use. The term engineering requires that software be produced

with the objective of delivering a successful final product with as much certainty as that of civil engineers

constructing a building or a road. For this reason, it is necessary that software engineers design software with a

full understanding of the intended design and the certainty of its correctness and reliability of operation in a

specific operating environment. In other words, software engineers should aim to develop the counterpart of the

civil engineer’s “blueprints” to guarantee the functionality, correctness, and behavior of the required software.

However, whereas civil engineers have been constructing roads, buildings, and bridges for centuries, software

has been built only since the early 1940s. For this reason, software engineering is an evolving discipline for

manufacturing software systems that, in a typical modern configuration, have many interacting software and

hardware components, with the purpose of accomplishing specific tasks, and that include, as an essential

component of the final system, documentation to substantiate the needs of the system and how it operates (Fig.

1). See also: SOFTWARE .

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 2 of 9

Photo of a software engineering drawing a software diagram on glass Fig. 1 Software engineer drawing a Unified Modeling Language (UML) class diagram. (Credit: Nullplus ∕ Getty
Images)
Software engineering process

A number of techniques have been defined for developing software systems, some of which are considered to be

among the most complex and difficult products ever built. As mentioned earlier, software engineering, following

the lead of its most mature siblings such as civil and hydraulic engineering, has adopted and adapted the strategy

of “divide and conquer” to make the development of software and its ever-increasing complexity more

manageable. Therefore, to better accomplish this task, the software engineering process is divided into phases or

developmental stages, such as requirements elicitation, design, coding, testing, debugging, deployment, and

maintenance. The definition of these phases, their order, and their interactions are known as the software

development life-cycle model. Currently, there are different models for, or approaches to, the software

development process. Among the most popular ones are the waterfall, prototype, incremental, iterative, spiral,

scrum, rapid application development, and agile models. In general, during the software development process,

the output of each phase serves as the input to the next one. Although there may be some reiteration among

some consecutive phases, the aim is that, as a result of this progressive developmental process, the final product

is a correctly working system that satisfies all the requirements and the users’ needs and, at the same time, is easy

to understand and maintain.

Requirements elicitation

The purpose of the requirements elicitation phase is to record and document the customer or system

requirements of the perceived system and its operating constraints. It aims to answer the question, “What is the

system supposed to do?” A typical requirements document includes a product overview, functional and

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 3 of 9
nonfunctional characteristics, system performance, user interface specifications, development specifications, the

operating and maintenance environment for the system, a high-level conceptual model of the system,

error-handling specifications, potential enhancements to the system, and other auxiliary information such as a

user’s manual, glossary, and index. This requirements elicitation phase is generally accomplished by using a

combination of techniques and tools, such as interviews, questionnaires, checklists, data-flow diagrams,

entity-relationship diagrams, and the like. This process can become difficult as a result of miscommunication

among the customer, the business and requirements analyst (BA who acts as a go-between for the customer and

the developer), and the developer. Factors that may play a major role in miscommunications among the parties

during information gathering are imprecision as a result of a lack of expressiveness or understanding by the

customer as to what the system needs to accomplish; the customer’s assumption that the BA or the developer

already understands the requirements in detail without much clarification; the customer’s unfamiliarity with the

technology; or the developer’s unfamiliarity with the customer’s business operations, data flow, and volatility of

requirements. The outcome or deliverable product of this phase is a document called the software requirements

specification (SRS). The requirements elicitation process is critical, as the outcome and acceptance of the final

system depends on the accuracy of the SRS. This is because each function in the system must be mapped to a

system requirement for traceability and vice versa. A potential weakness of this process is the incompleteness of

the SRS, therefore resulting in a partial picture of the needed system.

Design

The design phase helps to answer the question, “How is the system to be implemented?” It uses the SRS

document as its input and delivers as its output the architecture document, the implementation plan,

performance analysis, and a test plan.

The design phase maps the system requirements to an architecture that defines the components of the system,

their interfaces, and their behaviors using modeling tools, some of which are briefly described later on. The design

documents provide detailed information about programming languages, environments, system architecture,

algorithms, and data structures used to implement the system. During this phase, the designers also refer to cost

estimation models such as the constructive cost model (COCOMO). COCOMO uses a basic regression formula

that includes historical, current, and future project data as input parameters. The effort estimation is equally

important. Methods such as the analysis effort method are used to estimate the duration of the project.

Over the years, software engineers have developed different methodologies and notations to express system

requirements that try to mimic, to some degree, the blueprints used by architectures, civil engineers, or

electricians. As such, their notation is aimed at highlighting what is important to them, while minimizing the other

aspects of the design. However, regardless of the notation methodology used, the overall objective is to convey a

clear understanding of how the pieces fit together before worrying about how they will be implemented. The

main principles used are those of abstraction, modularity, information hiding, and coupling and cohesion.

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 4 of 9
Abstraction is concerned with the identification of key objects and functionality that might be reused throughout

the system. Closely associated with abstraction is the principle of modularity. A module is a simple unit of the

system that accomplishes a particular subtask, has a well-defined interface, and can be independently tested. It is

the totality and interplay of these modules that allows a particular functionality of the overall system to be

achieved. Modules can be thought of as “black boxes” in which the internal details are hidden from other

modules. However, modules need to interact, and therefore each one of them has a “public” component that

allows communication with the others. In the composition of each module, or even larger units, it is necessary to

take into account the relationships of its internal components, or cohesiveness. We can think of cohesiveness as

a measure of how well all the components are working together for a common goal. A pragmatic approach for

determining whether a module is performing a single task is to try to describe its functionality through a single

sentence that contains a single subject, verb, and object. If this is not possible, then the module is performing

more than one task and needs to be rewritten. A tighter relationship, or high cohesiveness, in a module is

desirable because it makes its functionality easier to understand, test, and document.

In addition to taking into account how the internal components of a module interact to accomplish a task, it is

crucial to consider how the different modules interact with one another (coupling). Coupling can be thought of

as a measure of the strength of the linkages between modules, based on the amount and type of information that

they exchange; that is, how closely connected the modules are. In this regard, minimal coupling is a very

desirable goal in software design. The notions of coupling and cohesion are related. “Low coupling” generally

correlates well with high cohesion and vice versa. Low coupling is regarded as an indicator of good design. If

high cohesion among modules also exists, the desirable goals of high readability and maintainability of any

individual system software component as well as of the overall system will be achieved. See also: ALGORITHM ;

COMPUTER PROGRAMMING ; DATA STRUCTURE ; MODELING LANGUAGES ; PROGRAMMING LANGUAGES .

Coding

The coding phase of the software development life cycle is concerned with implementing the software

components that will satisfy the system requirements as stated in the SRS document using one or more suitable

programming languages. The coding of the system may involve the use of either a high- or a low-level language.

High-level languages that may be used for writing appropriate code can be of different types, such as functional,

declarative, imperative, or object-oriented. Low-level languages that can be used are the machine or assembly

languages. For pragmatic reasons, most systems are generally developed using a combination of high-level

languages; however, whenever fast performance or minimum size of executable code (footprint) is required, the

use of a low-level language or a high-level language that allows direct interaction with the hardware is desirable.

As a result of this programming process, the deliverable for this phase is a working version of the envisioned

system. The coding phase considers the essential issues of quality, performance, and debugging. See also:

LANGUAGE THEORY ; OBJECT-ORIENTED PROGRAMMING .

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 5 of 9
Testing

Although the testing phase can be viewed as an independent phase of the software development life cycle, it is

highly integrated with the coding phase. This depends, in part, on the testing approaches used, as described later

in this section, and the fact that programmers continually test their modules. The main objective of the testing

phase is to examine the working version of the system to determine whether it meets the system requirements as

specified in the SRS document. It aims to find where the system fails to meet these specifications as the result of

errors, bugs, or overlooking a requirement implementation. All functionalities of the system must be mapped to a

particular set of requirements and vice versa. This is necessary not only for coding, but also for all life-cycle

phases and their deliverables. The software testing process is often divided into subphases. The first subphase is

unit testing of the software developed by a single programmer. The second part is integration testing, in which all

units are combined and tested as a single group and the test cases are developed directly from the SRS document.

System testing can be done in either a top-down or a bottom-up fashion. In top-down testing, high-level routines

are implemented and tested first and then used as a testing environment for the lower-level routines. This is

called the test harness. Testing the system in a bottom-up fashion proceeds by first developing low-level routines

and testing them, then progressively combining these routines and testing them as parts of larger and larger

program units. In practice, when both methods are used concurrently, the process is called sandwich testing.

Acceptance of the system is finally done by its intended users. When the new system is intended to replace an

existing one, both systems are run in parallel until the user is satisfied with the new system’s performance. The

final acceptance of a system is generally preceded by a walk-through and inspection testing, in which users and

developers drill the system rigorously to examine how it functions. See also: SOFTWARE TESTING .

Maintenance

Software systems are dynamic: they frequently change during and after deployment because of added

functionalities, new operating environments, repaired errors, and other factors. Maintenance occurs after

deployment, and may sometimes cost more than all the other software life-cycle phases combined. It consists of

three activities: adaptation, correction, and enhancement. Enhancement is the process of adding new

functionality to a system. This is usually done at the request of system users. This activity requires a full life cycle

of its own because it demands requirements, design, implementation, and testing. Studies have shown that about

half of all maintenance involves enhancements. Adaptive maintenance is the process of changing a system to

adapt it to a new operating environment; for example, moving a system from the Windows operating system to

the Linux operating system. Adaptive maintenance has been found to account for about a quarter of all

maintenance effort. Corrective maintenance is the process of fixing errors in a system after its release and

accounts for about 20% of all maintenance effort. Because software systems change frequently, it is necessary to

manage and control these changes through a well-structured software configuration management process. This

activity consists primarily of tracking versions of life-cycle objects and monitoring the changes and the

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 6 of 9
relationships among them. Typical configuration management activities also include handling and processing

change requests and keeping records of these activities. See also: OPERATING SYSTEM .

Software engineering tools

Because of the inherent complexity of the development process, software engineers have introduced various

tools to facilitate and monitor this critical phase of the software life cycle. In addition to the programming

languages, other tools such the Unified Modeling Language (UML) and the Model-Driven Architecture (MDA) are

used. UML provides a standard way of visualizing the design of the system independently of the programming

language used for its implementation (Fig. 1). The MDA framework enhances the capabilities of the UML by

providing model-to-model transformations, and thus is able to maintain platform-independent models of the

system.

Software development life cycles

The phases of the software engineering process are generic phases of any software development life cycle. But

because of the differences in the types of systems created and their implementation, more focused life-cycle

models have been created for various systems under development.

Waterfall model

The waterfall model is shown in Fig. 2 . In this model, the requirements are finalized early in the cycle, allowing

for fewer miscommunications and completion of the project in a timely manner. On the other hand, this

characteristic can also be seen as a disadvantage because it is difficult to introduce new requirements at later

phases of the development process. By its nature, the model does not lend itself well to progressive enhancement

and incremental planning.

Prototype model

In this model, the developers create a prototype of the application based on a limited version of the user

requirements (Fig. 3). It is basically a hollow shell showing some of the basic features and functionality of the

system. A critical drawback of this model is that, from the users’ perspective, the prototype may be seen as the

final product and some of the original requirements may now seem not to be needed. However, after using the

prototype for a while, some of the requirements that were not considered necessary may become desirable or the

user may have new requirements that were not initially considered. Because of this problem, the prototype may

sometimes have to be redesigned to add new functionality, and this, in turn, increases the development cost.

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 7 of 9

Illustration of the waterfall model showing the steps from project planning to acceptance Fig. 2 Waterfall model.

Illustration of the prototype model showing the steps from initial requirements through customer acceptance Fig. 3 Prototype model.

https://www.accessscience.com

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 8 of 9
Agile

Agile software development is a group of software development methods in which requirements and solutions

evolve through collaboration between the developers and the customers. This model provides the advantage of

continuous improvement by implementing the changes in small increments over a short period of time. Thus, the

agile method encourages rapid and flexible response to changes and a timely delivery. Some of the agile

principles include customer satisfaction by rapid delivery of useful software, the flexibility to change

requirements late in development, and close collaboration between users and developers; the working software

in this model can be considered the principal measure of progress and adaptation to changing circumstances.

See also: AGILE METHODS IN SOFTWARE ENGINEERING .

Scrum

Scrum is an iterative and incremental agile software development framework for managing product development.

The new or changed requirements cannot be easily addressed in a traditional predictive or planned manner. This

model takes into account that customers can change their minds and allows them to implement product changes

using a developmental increment called a “sprint” that typically takes about three weeks to produce. The

customer and the developer team agree on a set of features from the product backlog (sprint backlog) that still

need to be implemented during a sprint.

Pranshu Gupta

Keywords

software; software development life cycle; reverse engineering

Test Your Understanding

1. What are the typical phases in the software development life cycle?

2. How does the waterfall model of software development differ from the prototype model?

3. Critical Thinking: When might the scrum method be a better choice than the waterfall method?

4. Critical Thinking: How is the concept of high cohesion and low coupling important to software

maintenance and prolonging the value of software over time?

Bibliography

M. Franzago et al., Collaborative model-driven software engineering: A classification framework and a research

map, IEEE Trans. Software Eng ., 44:1146–1175, 2018 DOI: http://doi.org/10.1109/TSE.2017.2755039

https://www.accessscience.com
http://doi.org/10.1109/TSE.2017.2755039

AccessScience from McGraw-Hill Education
www.accessscience.com

Page 9 of 9
Additional Readings

S. Cha et al. (eds.), Handbook of Software Engineering , Springer, 2019

V. Gruhn and R. Striemer (eds.), The Essence of Software Engineering , Springer, 2018

R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design , Prentice Hall, 2017

I. Sommerville, Software Engineering , 10th ed., Pearson, 2016

Software Engineer Insider

Software Engineering Institute, Carnegie Mellon University

https://www.accessscience.com

	Software engineering
	Key Concepts
	Software engineering process
	Requirements elicitation
	Design
	Coding
	Testing
	Maintenance
	Software engineering tools
	Software development life cycles
	Waterfall model
	Prototype model
	Agile
	Scrum

	Keywords
	Test Your Understanding
	Bibliography
	Additional Readings

