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Chemical kinetics
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A branch of physical chemistry that seeks to measure the rates of chemical reactions, describe them

in terms of elementary steps, and understand them in terms of the fundamental interactions between

molecules.

Reaction Kinetics

Although the ultimate state of a chemical system is specified by thermodynamics, the time required to reach that

equilibrium state is highly dependent upon the reaction. For example, diamonds are thermodynamically unstable

with respect to graphite, but the rate of transformation of diamonds to graphite is negligible. As a consequence,

determining the rate of chemical reactions has proved to be important for practical reasons. Rate studies have

also yielded fundamental information about the details of the nuclear rearrangements which constitute the

chemical reaction.

Traditional chemical kinetic investigations of the reaction between species X and Y to form Z and W, reaction

(1), sought a rate of the form given in Eq. (2),

Image of Chem Equation 1 (1)

Image of Equation 2 (2)

where d[Z]∕dt is the rate of appearance of product Z, f is some function of concentrations of X, Y, Z, and W

which are themselves functions of time, and k is the rate constant. Chemical reactions are incredibly diverse, and

often the function f is quite complicated, even for seemingly simple reactions such as that in which hydrogen and

bromine combine directly to form hydrogen bromide (HBr). This is an example of a complex reaction which

proceeds through a sequence of simpler reactions, called elementary reactions. For reaction (3d), the sequence

of elementary reactions is a chain mechanism known to involve a series of steps, reactions (3a)–(3c).

Image of Chem Equation 3a (3a)
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Image of Chem Equation 3b (3b)

Image of Chem Equation 3c (3c)

Image of Chem Equation 3d (3d)

This sequence of elementary reactions was formerly known as the reaction mechanism, but in the chemical

dynamical sense the word mechanism is reserved to mean the detailed motion of the nuclei during a collision.

Bimolecular processes

An elementary reaction is considered to occur exactly as written. Reaction (3b) is assumed to occur when a

bromine atom hits a hydrogen molecule. The products of the collision are a hydrogen bromide molecule and a

hydrogen atom. On the other hand, the overall reaction is a sequence of these elementary steps and on a

molecular basis does not occur as reaction (3d) is written. With few exceptions, the rate law for an elementary

reaction A + B → C + D is given by d[C]∕dt = k[A][B]. The order (sum of the exponents of the concentrations) is

two, which is expected if the reaction is bimolecular (requires only species A to collide with species B). The rate

constant k for such a reaction depends very strongly on temperature, and is usually expressed as k = Z,ABρ

exp(−E,a ∕RT). Z,AB is the frequency of collision between A and B calculated from molecular diameters and

temperature; ρ is an empirically determined steric factor which arises because only collisions with the proper

orientation of reagents will be effective; and E,a , the experimentally determined activation energy, apparently

reflects the need to overcome repulsive forces before the reagents can get close enough to react.

Unimolecular processes

In some instances, especially for decompositions, AB → A + B, the elementary reaction step is first-order, Eq. (4),

Image of Equation 4 (4)

which means that the reaction is unimolecular. The species AB does not spontaneously dissociate; it must first be

given some critical amount of energy, usually through collisions, to form an excited species AB,∗. It is the species

AB,∗ which decomposes unimolecularly.

Philip R. Brooks

https://www.accessscience.com


AccessScience from McGraw-Hill Education
www.accessscience.com

Page 3 of 16
Relaxation Methods

Considerable use has been made of perturbation techniques to measure rates and determine mechanisms of rapid

chemical reactions. These methods provide measurements of chemical reaction rates by displacing equilibria. In

situations where the reaction of interest occurs in a system at equilibrium, perturbation techniques called

relaxation methods have been found most effective for determining reaction rate constants.

A chemical system at equilibrium is one in which the rate of a forward reaction is exactly balanced by the rate of

the corresponding back reaction. Examples are chemical reactions occurring in liquid solutions, such as the

familiar equilibrium in pure water, shown in reaction (5). The molar equilibrium

Image of Chem Equation 5
(5)

constant at 25◦C (77◦F) is given by Eq. (6),

Image of Equation 6

(6)

where bracketed quantities indicate molar concentrations. It arises naturally from the equality of forward and

backward reaction rates, Eq. (7). Here k,f and k,b

Image of Equation 7 (7)

are the respective rate constants that depend on temperature but not concentrations. Furthermore, the

combination of Eqs. (6) and (7) gives rise to Eq. (8).

Image of Equation 8 (8)

Thus a reasonable question might be what the numerical values of k,f in units of s,−1 and k,h in units of dm,3 mol,−1

s,−1 must be to satisfy Eqs. (6) through (8) in water at room temperature. Stated another way, when a liter of 1 M

hydrochloric acid is poured into a liter of 1 M sodium hydroxide (with considerable hazardous sputtering), how

rapidly do the hydronium ions, H,+(aq), react with hydroxide ions, OH,−(aq), to produce a warm 0.5 M aqueous

solution of sodium chloride? In the early 1950s it was asserted that such a reaction is instantaneous. Turbulent

mixing techniques were (and still are) insufficiently fast (mixing time of the order of 1 ms) for this particular
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WIDTH:BFig. 1 Relaxational response to a rectangular step function in an external parameter such as temperature or
pressure. The broken line represents the time course of the adjustment (relaxation) of the chemical equilibrium
to the new temperature or pressure. (After C. Bernasconi, Relaxation Kinetics, Academic Press, 1976)
reaction to occur outside the mixing chamber. The relaxation techniques were conceived by M. Eigen, who

accepted the implied challenge of measuring the rates of seemingly immeasurably fast reactions. See also:

ULTRAFAST MOLECULAR PROCESSES.

The essence of any of the relaxation methods is the perturbation of a chemical equilibrium (by a small change in

temperature, pressure, electric-field intensity, or solvent composition) in so sudden a fashion that the chemical

system, in seeking to reachieve equilibrium, is forced by the comparative slowness of the chemical reactions to

lag behind the perturbation (Fig. 1).

Temperature jump

Reaction (5) has a nonzero standard enthalpy change, ΔH◦, associated with it, so that a small increase in the

temperature of the water (H,2O) requires the concentrations of hydrogen ions [H,+] and hydroxide ions [OH,−] to

increase slightly, and [H,2O] to decrease correspondingly, for chemical equilibrium to be restored at the new

higher temperature. Thus a small sample cell containing a very pure sample of water may be made one arm of a

Wheatstone conductance bridge, and further configured so that a pulse of energy from a microwave source (or

infrared laser of appropriate wavelength) is dissipated in the sample liquid. The resulting rise in temperature of

about 2◦C (3.6◦F) will produce a small increase in conductance that will have an exponential shape and a time

constant or relaxation time τ ≃ 27 microseconds; τ is the time required for the signal amplitude to drop to 1∕e =
1∕2.718 of its initial value, where e is the base of natural logarithms.

In pure water at 25◦C (77◦F), [H,+] = [OH,−] = 10,−7 M, and for small perturbations, the value for τ is given by Eq.

(9), from which it follows

Unlabelled Image
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WIDTH:CFig. 2 Schematic of a Joule heating temperature-jump apparatus. (After H. Eyring and E. M. Eyring, Modern
Chemical Kinetics, Reinhold, 1963)
Image of Equation 9 (9)

that k,b ≃ 1.8 × 10,11 dm,3 mol,−1 s,−1. This is an exceptionally large rate constant for a bimolecular reaction

between oppositely charged ions in aqueous solution and is, in fact, larger than that for any other diffusive

encounter between ions in water. Eigen and L. DeMaeyer, who first determined this rate constant (using another

relaxation method called the electric-field jump method), attributed the great speed of the back reaction of the

equilibrium, reaction (5), to the exceptionally rapid motion of a proton through water, accomplished by the

successive rotations of a long string of neighboring water molecules (Grotthuss mechanism). Since sample

solutions can be heated by a mode-locked laser on a picosecond time scale or by a bunsen burner on a time scale

of minutes, the temperature jump (T-jump) relaxation method just described is very versatile. The choice of the

particular means of effecting the temperature perturbation is dictated only by the requirement that the

temperature rise somewhat more rapidly than the time constant of the chemical reaction to be explored, so that

a tedious deconvolution can be avoided. The discharge of a high-voltage (15–30-kV) capacitor through the

sample liquid containing sufficient inert electrolyte to make it a good electrical conductor is the now classic Joule

heating T-jump method used by Eigen and coworkers in their pioneering studies. A schematic of such an

apparatus is shown in Fig. 2. The 30-kV voltage generator charges the 0.1-microfarad condenser to the voltage at

which the spark gap breaks down. The condenser then discharges across the spark gap and through the sample

cell, containing an aqueous 0.1 M ionic strength solution, to ground. The sample cell is an approximately 50 ml

(3.05 in.,3) Plexiglas cell containing two platinum electrodes spaced 1 cm (0.4 in.) apart and immersed in an

aqueous 0.1 M ionic strength solution. The surge of current raises the temperature of the 1-ml (0.061-in.,3)

volume of solution between the electrodes by 10◦C (18◦F) in a few microseconds.
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Electric-field jump

In a situation, such as reaction (8), in which electrically neutral reactant species dissociate into oppositely

charged ions, an especially sensitive tool for measuring rate constants of forward and backward reactions is the

electric-field jump (E-jump) technique with conductometric detection. In a strong electric field (of the order of 4

× 10,6 V m,−1), a weak acid in solution is caused to dissociate to a greater degree than it would in the absence of

the electric field. For weak electrolytes, such as aqueous acetic acid or ammonia, the effect is the order of 10% or

less of the total normal dissociation, even at very high electric-field strengths. However, with a sensitive,

high-voltage, Wheatstone bridge, the exponential increase with time in the concentration of ions following a

precipitous increase in electric-field strength is readily detected. The measured relaxation time (τ ) is clearly that

corresponding to the high-electric-field environment, but since the rate constants for these reactions differ little

in and out of the electric field, no serious problem is posed.

A more serious concern is that the sample solution may have a very high electrical resistance, so that the

supposedly square step function in the electric-field strength is distorted by a significant voltage drop with

concomitant heating of the sample liquid. Problems of working with high voltages, balancing capacitive and

inductive effects in a very sensitive conductance bridge (now often circumvented by spectrophotometric

detection), and the comparative difficulty of evaluating amplitudes of relaxations (as opposed to their readily

determined time constants) are all factors that have worked against the wide use of the E-jump technique. There

are many more ways of achieving a T-jump than an E-jump, and ΔH◦ values for chemical equilibria are readily

available in the thermodynamic literature, whereas the extent to which a chemical equilibrium is displaced by an

electric-field increment is rarely already known and is difficult to determine. Thus the commercialization of the

T-jump method and the comparative neglect of the E-jump relaxation technique are readily understood.

Notwithstanding these difficulties, the E-jump technique is without peer for the investigation of the kinetics of

solvent autoionization or for the exploration of the properties of weak electrolyte solutes in exotic solvents such

as acetonitrile or xenon (the latter liquefied under a pressure of about 50 atm or 5 megapascals), so long as the

relaxation time to be measured lies in the range 30 nanoseconds < τ < 100 μs.

Ultrasonic absorption

Two other relaxation methods more widely used than the E-jump technique are pressure jump (P-jump) and

ultrasonic absorption. Each relies for its effectiveness on a volume change, ΔV◦, occurring in an aqueous sample

equilibrium undergoing kinetic investigation. (In a non-aqueous solvent it will frequently be more important that

ΔH◦ be large than that ΔV◦ be so for the equilibrium to be susceptible to study by these two relaxation

techniques.) As electrically neutral, weak electrolyte solute species dissociate into ions in aqueous solution, there

is an increase in the number of solvent molecules drawn into a highly ordered solvation sheath. The higher the

charge density of the ion, the more water molecule dipoles are bound and the greater the change in V◦ as

reactants become products. Thus the dissociation of an aqueous neodymium(III) sulfate complex is particularly
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WIDTH:BFig. 3 Schematic of laser Debye-Sears apparatus for measuring ultrasonic absorption (about 15–300 MHz) in a
sample liquid. (After W. J. Gettins and E. Wyn-Jones, Techniques and Applications of Fast Reactions in Solution,
D. Reidel, 1979)
susceptible to study by one or more of the four or five ultrasonic absorption methods that cover the f ≃ 100

kHz–1 GHz sound frequency range. Unlike the T-jump and E-jump relaxation methods, which usually employ

step function perturbations, the ultrasonic absorption techniques are continuous-wave experiments in which the

sample chemical equilibrium absorbs a measurable amount of the sound wave’s energy when the frequency of

the sound wave ( f ) and the relaxation time of the chemical equilibrium bear the relation to one another given by

Eq. (10).

Image of Equation 10 (10)

A particularly easy ultrasonic absorption experiment to understand and perform is the laser Debye-Sears

technique. A continuously variable frequency sound wave is introduced by a quartz piezoelectric transducer into

a 30-ml (1.83-in.,3) sample cell that has entrance and exit windows for a visible laser light beam that passes

through the cell at about 90◦ to the direction of travel of the planar sound wave. The regions of compression and

rarefaction in the sound wave act as a diffraction grating for the laser light beam. If a chemical equilibrium in the

sample strongly absorbs a particular frequency of sound ( f ), the definition of the “diffraction grating” will

deteriorate and the measured intensity of the first-order diffracted laser light will diminish. The frequency of

minimum diffracted light intensity will be that of Eq. (10). Figure 3 shows a diagram of the apparatus. The

piezoelectric (quartz) transducer is cemented to the bottom of a plastic rod that is driven up and down by a

computer-controlled stepping motor. The angle of diffraction of the laser beam by the alternating regions of

compression and rarefaction in the liquid (suggested by the horizontal lines) is exaggerated in the diagram.

Ultrasonic absorption techniques have been used in kinetic investigations of complicated biophysical systems

such as the order-disorder transitions that occur in liquid crystalline phospholipid membranes. While the

ultrasonic techniques look through a conveniently broad time window at kinetic processes in solution, this

picture window is difficult to “see through” in that many equilibrium processes in solution can absorb sound
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energy and the responsible process is not instantly identified by a characteristic absorption of electromagnetic

radiation as in a spectrophotometric T-jump or E-jump experiment. A further disadvantage arises from the great

breadth of the ultrasonic absorption “peaks” in a plot of normalized sound absorption versus sound frequency.

Unless multiple relaxation times in a chemical system are quite widely separated in time, they are difficult to

resolve in an ultrasonic absorption spectrum. See also: ULTRASONICS.

Pressure jump

The typical pressure-jump (P-jump) experiment is one in which a liquid sample under about 200 atm (20 MPa)

pressure is suddenly brought to atmospheric pressure by the bursting of a metal membrane in the sample cell

autoclave. Relaxation times measured spectrophotometrically or conductometrically are thus accessible if τ >

100 μs. This technique has proven particularly useful in the elucidation of micellar systems of great interest for

catalysis and for petroleum recovery from apparently depleted oil fields.

The continuous- and stopped-flow techniques antedate somewhat the relaxation techniques described above,

and have the sometimes important advantage of permitting kinetic measurements in chemical systems far from

equilibrium. The stopped-flow experiment is one in which two different liquids in separate syringes are mixed

rapidly in a tangential jet mixing chamber and then the rapid flow of mixed reactants is almost immediately

brought to a halt in a spectrophotometric, conductometric, or calorimetric observation chamber. Reaction

half-lives exceeding 2 ms are easily accessible. See also: SHOCK TUBE.

Other relaxation methods

Stopped-flow equipment has been used in concentration-jump and solvent-jump relaxation kinetic studies. An

example of an application of the solvent-jump technique to a system insensitive to concentration-jump is a

kinetic study of reaction (11)

Image of Chem Equation 11(11)

in mixed CCl,4-acetic acid solvents of varying composition (Bu = butyl). The thermodynamic treatment of the

solvent jump is just about the only aspect of the presently known relaxation techniques that was not described in

exhaustive detail by the earliest publications of Eigen and DeMaeyer. See also: CHEMICAL THERMODYNAMICS.

Edward M. Eyring

Gas-Phase Reactions

The rates of thermal gas-phase chemical reactions are important in understanding processes such as combustion

and atmospheric chemistry.
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Elementary reactions, mechanisms, and rates

Chemical conversion of one stable, gas-phase molecule into another is an apparently simple process; yet it is

highly unlikely to occur in just a single step, but as a web of sequential and parallel reactions involving many

species. The oxidation of methane (CH,4) to carbon dioxide (CO,2) and water provides an excellent example. It

occurs in combustion (for example, in burning natural gas, which is mostly methane) as well as in the

atmosphere. In both cases, the net process may be written down as single reaction (12).

Image of Chem Equation 12(12)

The reaction does not, however, result from collision of two oxygen (O,2) molecules with one methane molecule.

Rather, it involves many separate steps. A simplified list of the steps involved in reaction (12) for both

combustion and for the atmosphere is given below.
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Combustion:
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Unlabelled Image

Atmospheric oxidation:

Unlabelled Image

Even though the overall reaction is the same in both environments, the steps are quite different, as are the rates,

temperature dependences, and by-products. Each is called an elementary reaction, and the sum of the steps that

makes up the overall reaction is called the mechanism. Currently, the major thrust of chemical kinetics is to

elucidate such mechanisms and to measure (or calculate) the rates of the elementary reactions.

All elementary reactions fundamentally require a collision between two molecules. Even in the case of a

unimolecular reaction, in which a single molecule breaks apart or isomerizes to another form, the energy

required for the process comes from collision with other molecules. The species involved in many gas-phase
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elementary reactions are free radicals, molecules that have one or more unpaired electrons. Such species tend to

be highly reactive, and they are responsible for carrying out most gas-phase chemistry.

A reaction rate is the rate at which the concentration of one of the reactants or products changes with time. The

objective of a kinetics experiment is not to measure the reaction rate itself but to measure the rate coefficient, an

intrinsic property of the reaction that relates the reactant concentrations to their time rates of change. For

example, the mathematical expression for the rate of a biomolecular reaction, A + B → products, is differential

equation (13).

Image of Equation 13 (13)

The square brackets denote the concentrations of A and B, and k is the rate coefficient described above. The

dependence of the rate expression on reactant concentrations is determined experimentally, and it also arises

from a fundamental tenet of chemistry known as the law of mass action. Once the rate constant is known, the

rate of a reaction can be computed for any given set of concentrations.

Rate constants usually change with temperature because of the change in the mean energy of colliding

molecules. The temperature dependence often follows an Arrhenius expression, k = A exp(−E,A ∕ RT), where A

is a preexponential factor that is related to the gas-phase collision rate, R is the universal gas constant, and T is the

absolute temperature (in kelvins). The key quantity is the activation energy, E,A , the amount of energy required

to induce a reaction. Pressure dependences are usually important only for association reactions, A + B → AB,

since collision of A with B will form an energized complex, AB,∗, that will simply redissociate unless a subsequent

collision carries away enough energy to stabilize the AB product. The probability of a stabilizing collision

increases with the collision frequency and thus the total pressure.

In the simple case of a unimolecular reaction, A → P, the rate expression is Eq. (14).

Image of Equation 14 (14)

Equation (14) is first-order since the rate is proportional to the reactant concentration to the first power, and it

leads to an expression for the change in the concentration of A or P with time (called an integrated rate

expression), as in Eqs. (15).

Image of Equation 15a (15a)

Image of Equation 15b (15b)
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WIDTH:BFig. 4 Concentration of reactant (A) decreases while product (P) increases with time (arbitrarily shown in
microseconds).
The subscripts denote the concentrations at zero time (initial concentration) and an arbitrary time t. The

concentration of A decreases (because it is reacting away) as a function of time, while the concentration of P

increases with time such that the sum of the concentrations of A and P is always constant and equal to the initial

concentration of A (Fig. 4). Because first-order reactions are mathematically simple, kineticists try to reduce all

studied reactions (if at all possible) to this form. A second-order reaction, for example A + B → products, has the

rate expression given in Eq. (13). To reduce the second-order expression to the first-order expression, Eq. (14),

one chooses one of the concentrations to be in large excess, for example [B] ≫ [A]. The concentration of B is

then approximately constant during the course of the reaction, and it may be combined with the rate constant to

give an expression identical to Eq. (14) that depends on the concentration of A alone.

Experimental methods

The experimental challenges to rate constant measurements include generation of reactive species of interest,

the measurement of their concentration on a time scale fast enough to follow the course of the reaction, and the

measurement of the reaction time itself. The capability for measurement of small concentrations (down to a few

molecules in a milliliter) and short times (down to femtoseconds; 1 fs = 10,−15 s) has improved dramatically since

the early 1980s and has enabled kineticists to study extremely fast gas-phase reactions. The following examples

illustrate how rate constants are measured.

The rate constant for the bimolecular reaction of OH with methane is very important. Figure 5a illustrates its

measurement via the commonly used pulsed photolysis–laser induced fluorescence (PP–LIF) technique. A pulse

of short-wavelength ultraviolet light from a laser irradiates a gas mixture containing a precursor molecule, such as

hydrogen peroxide (H,2O,2) or nitric acid (HNO,3), that absorbs the light and fragments instantaneously to produce

OH. A second laser produces a pulse of light that is tuned to a color (wavelength) absorbed by the OH radicals,
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WIDTH:DFig. 5 Measurement of the rate constant for the bimolecular reaction of OH with methane. (a) Pulsed photolysis.
OH concentrations are measured with methane and without methane. (b) Discharge flow. OH concentrations
are detected at various distances from a detector. The plot shows OH concentrates measured with methane,
with a lower concentration of methane, and without methane.
which in turn emit light (fluoresce) in all directions. The fluorescence intensity falling on a detector is

proportional to the OH concentration. Both laser pulses have very short duration (typically <2 × 10,−8 s or 20

nanoseconds) on the time scale of the reaction. The first pulse creates the OH radicals and defines zero time, and

variation of the time delay between the two lasers varies the reaction time. Methane is present in large excess

over OH, and thus its concentration, as measured by its pressure, is essentially constant during the course of the

reaction. See also: LASER; LASER PHOTOCHEMISTRY.

The same rate coefficient may also be measured using the apparatus shown in Fig. 5b. In this case, a flow of gas

containing hydrogen (H,2) passes through a microwave discharge, where H,2 breaks down to H atoms. Then it

reacts with nitrogen dioxide (NO,2) to make OH and nitric oxide (NO). The NO is unreactive with methane and

does not interfere with the OH reaction. Methane flows through a movable injector at the center of a flow tube.

The two gas flows mix at the injector and initiate reaction between OH and methane. A laser-induced

fluorescence detector, similar to the one described above, at the end of the tube measures the amount of OH

present at that point. (Other detectors, such as a mass spectrometer, also can be used.) Since the gas flow

velocity down the tube is constant, the distance from the injector to the mass spectrometer can be converted to a
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reaction time, and movement of the injector to different positions in the tube varies the reaction time. As above,

its pressure in the flow tube gives the approximately constant methane concentration.

Both of the above examples are direct methods in which the time rate of concentration change is directly

observed. Relative rate constant measurements can be done for the determination of the rate constant for

reaction of OH with hydrofluorocarbon 134a (HFC-134a). This compound is used as an automobile refrigerant in

place of the banned CFCs (chlorofluorocarbons), and, similar to methane, its reaction with OH determines its

degradation rate in the atmosphere. The OH radicals are continuously produced in a mixture containing both

methane and HFC-134a, and the depletion of methane and HFC-134a is measured. The ratio of the depletions is

then proportional to the rate constants for reaction of OH with each compound. Since the rate constant for

reaction of OH with methane is known, the measurement provides the previously unknown rate constant for

reaction of OH with HFC-134a.

There are many other techniques for measurement of reactant or product concentrations, including ultraviolet,

visible, and infrared light absorption, gas chromatography, and a host of additional fluorescence and mass

spectrometric methods.

Outlook

Complex gas-phase chemical reactions may be broken down into elementary steps that describe reactions at the

level of collisions between individual molecules. The rate constants for such elementary steps allow calculation

of the reaction rates from reactant concentrations as well as kinetic modeling of larger chemical processes.

Determination of elementary rate constants involves measurement of reactant or product concentrations on the

time scale of the reaction. Rate constants may also be made in a relative fashion in cases where two reactions

share a common reactant and one rate constant is known.

A. R. Ravishankara, S. S. Brown
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