Article
Article
- Physics
- Atomic and molecular physics
- Franck-Condon principle
- Physics
- Solid state physics
- Franck-Condon principle
Franck-Condon principle
Article By:
Schulman, James H. Formerly, U.S. Naval Research Laboratory, Washington, DC.
Klick, Clifford C. Solid State Division, U.S. Naval Research Laboratory, Washington, DC.
Last reviewed:June 2020
DOI:https://doi.org/10.1036/1097-8542.271100
The generalization that the transition from one energy state of a molecular system to another occurs so nearly instantaneously that the nuclei of the atoms involved can be considered as stationary during the process. The Franck-Condon principle is closely related to the Born-Oppenheimer approximation, in which the various motions (electronic, nuclear vibrations and rotations) are considered to be separable, and in which the electrons respond to the instantaneous vibrations of the system whereas the system responds only to the average position of the electrons. The principle, proposed by J. Franck in 1925 and developed quantum-mechanically by E. U. Condon in 1928, is important in discussing systems of more than one atom. It is therefore valuable in molecular spectroscopy and in the interpretation of the optical properties of liquids and solids.
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information