Article
Article
- Physics
- Solid state physics
- Plasmon
Plasmon
Article By:
Brongersma, Mark L. Department of Materials Science and Engineering, Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California.
Kik, Pieter G. College of Optics and Photonics, University of Central Florida, Orlando, Florida.
Last reviewed:August 2020
DOI:https://doi.org/10.1036/1097-8542.526250
- Bulk and surface plasmons
- History of plasmon research
- Optical excitation of surface plasmons
- Applications of surface plasmons
- Related Primary Literature
- Additional Reading
The quanta of waves produced by collective effects of large numbers of electrons in matter when the electrons are disturbed from equilibrium. Plasmon excitations are easily detected in metals because they have a high density of electrons that are free to move. The result of plasmon stimulation by energetic electrons is seen in Fig. 1. The graph shows the probability of energy losses by fast electrons transmitted through a thin aluminum foil. The number of detected electrons in a beam is plotted against the energy loss during transit through the foil. Each energy-loss peak corresponds to excitation of one or more plasmons. Within experimental error, the peaks occur at integral multiples of a fundamental loss quantum.
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information