Article
Article
- Engineering & Materials
- Metallurgical engineering
- Plastic deformation of metals
- Engineering & Materials
- Materials
- Plastic deformation of metals
Plastic deformation of metals
Article By:
Anderson, Peter Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio.
Last reviewed:January 2020
DOI:https://doi.org/10.1036/1097-8542.526600
- Deformation regimes and plastic stress-strain response
- Reasons for plastic deformation
- Incremental slip and theoretical strength
- Single crystals and polycrystals
- Strategies to strengthen metals against plastic deformation
- Effect of strengthening, temperature, and deformation rate
- Related Primary Literature
- Additional Reading
The permanent change in shape of a metal object as a result of applied or internal forces. This feature permits metals to be formed into pipe, wire, sheet, and so on, with an optimal combination of strength, ductility, and toughness. The onset of noticeable plastic deformation occurs when the applied tensile stress or applied effective stress reaches the tensile yield strength of the material. Continued plastic deformation usually requires a continued increase in the applied stress. The effects of plastic deformation may be removed by heat treatment. See also: Plasticity
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information