Article
Article
- Engineering & Materials
- Industrial and production engineering
- Process engineering
- Engineering & Materials
- Chemical engineering - general
- Process engineering
Process engineering
Article By:
Leonard, Edward F. Chemical Engineering Department, Columbia University, New York, New York.
Niebel, Benjamin W. Formerly, Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, Pennsylvania.
Last reviewed:January 2020
DOI:https://doi.org/10.1036/1097-8542.546610
- Bulk Products
- Batch versus continuous operation
- Material and energy balances
- Process units and reactors
- Reactor design
- Integration and optimization
- Extreme conditions
- Economic considerations
- Discrete Products
- Choice of process
- Sequence of secondary operations
- Specifications concerning tools
- Related Primary Literature
- Additional Reading
A branch of engineering in which a process effects chemical and mechanical transformations of matter, conducted continuously or repeatedly on a substantial scale. Process engineering constitutes the specification, optimization, realization, and adjustment of the process applied to manufacture of bulk products or discrete products. Bulk products are those which are homogeneous throughout and uniform in properties, are in gaseous, liquid, or solid form, and are made in separate batches or continuously. Examples of bulk product processes include petroleum refining, municipal water purification, the manufacture of penicillin by fermentation or synthesis, the forming of paper from wood pulp, the separation and crystallization of various salts from brine, the production of liquid oxygen and nitrogen from air, the electrolytic beneficiation of aluminum, and the manufacture of paint, whiskey, plastic resin, and so on. Discrete products are those which are separate and individual, although they may be identical or very nearly so. Examples of discrete product processes include the casting, molding, forging, shaping, forming, joining, and surface finishing of the component piece parts of end products or of the end products themselves. Processes are chemical when one or more essential steps involve chemical reaction. Almost no chemical process occurs without many accompanying mechanical steps such as pumping and conveying, size reduction of particles, classification of particles and their separation from fluid streams, evaporation and distillation with attendant boiling and condensation, absorption, extraction, membrane separations, and mixing.
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information