Article
Article
- Physics
- Solid state physics
- Relaxation time of electrons
- Engineering & Materials
- Physical electronics
- Relaxation time of electrons
Relaxation time of electrons
Article By:
Eesley, Gary L. General Motors Research and Development Center, Warren, Michigan.
Last reviewed:August 2020
DOI:https://doi.org/10.1036/1097-8542.580300
- Transport property
- Constructive interference
- Local measurements
- Energy relaxation
- Semiconductor measurements
- Related Primary Literature
- Additional Reading
The characteristic time for a distribution of electrons in a solid to approach or “relax” to equilibrium after a disturbance is removed. A familiar example is the property of electrical conductivity, in which an applied electric field generates an electron current which relaxes to an equilibrium zero current after the field is turned off. The conductivity of a material is directly proportional to this relaxation time; highly conductive materials have relatively long relaxation times. The closely related concept of a lifetime is the mean time that an electron will reside in a given quantum state before changing state as a result of collision with another particle or intrinsic excitation. This lifetime is related to equilibrium properties of the material, whereas the relaxation time relates to the thermal and electrical transport properties. The average distance that an electron travels before a collision is called the mean free path. Although typical collision times in metals are quite short (on the order of 10−14 s at room temperature), mean free paths range from about 100 atomic distances at room temperature to 106 atomic distances in pure metals near absolute zero temperature. Considering the very dense packing of atoms in a solid, these surprisingly long electron path lengths are analogous to the unlikely event that a rifle bullet might travel for miles through a dense forest without hitting a tree. The detailed explanation of the electron mean free path in metals is a major success of the modern theory of solids.
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information