Article
Article
- Physics
- Atomic and molecular physics
- Auger effect
- Physics
- Solid state physics
- Auger effect
Auger effect
Article By:
Feldman, Leonard C. AT&T Bell Laboratories, Murray Hill, New Jersey.
Last reviewed:October 2019
DOI:https://doi.org/10.1036/1097-8542.062300
One of the two principal processes for the relaxation of an inner-shell electron vacancy in an excited or ionized atom. The Auger effect is a two-electron process in which an electron makes a discrete transition from a less bound shell to the vacant, but more tightly bound, electron shell. The energy gained in this process is transferred, via the electrostatic interaction, to another bound electron which then escapes from the atom. This outgoing electron is referred to as an Auger electron and is labeled by letters corresponding to the atomic shells involved in the process. For example, a KLI LIII Auger electron corresponds to a process in which an LI electron makes a transition to the K shell and the energy is transferred to an LI electron (illus.a). By the conservation of energy, the Auger electron kinetic energy E is given by E = E(K) − E(LI) − E(LIII) where E(K,L) is the binding energy of the various electron shells. Since the energy levels of atoms are discrete and well understood, the Auger energy is a signature of the emitting atom. See also: Electron configuration; Energy level (quantum mechanics)
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information