Article
Article
Resolving power (optics)
Article By:
Jenkins, Francis A. Formerly, Department of Physics, University of California, Berkeley, California.
Harrison, George R. Formerly, School of Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Last reviewed:January 2020
DOI:https://doi.org/10.1036/1097-8542.582700
- Chromatic resolving power
- Resolving power of prisms
- Resolving power of gratings
- Resolving power of interferometers
- Resolving power of telescopes
- Resolving power of microscopes
- Related Primary Literature
- Additional Reading
A quantitative measure of the ability of an optical instrument to produce separable images. The images to be resolved may differ in position because they represent (1) different points on the object, as in telescopes and microscopes, or (2) images of the same object in light of two different wavelengths, as in prism and grating spectroscopes. For the former class of instruments, the resolving limit is usually quoted as the smallest angular or linear separation of two object points, and for the latter class, as the smallest difference in wavelength or wave number that will produce separate images. Since these quantities are inversely proportional to the power of the instrument to resolve, the term resolving power has generally fallen into disfavor. It is still commonly applied to spectroscopes, however, for which the term chromatic resolving power is used, signifying the ratio of the wavelength itself to the smallest wavelength interval resolved. The figure quoted as the resolving power or resolving limit of an instrument may be the theoretical value that would be obtained if all optical parts were perfect, or it may be the actual value found experimentally. Aberrations of lenses or defects in the ruling of gratings usually cause the actual resolution to fall below the theoretical value, which therefore represents the maximum that could be obtained with the given dimensions of the instrument in question. This maximum is fixed by the wave nature of light and may be calculated for given conditions by diffraction theory. See also: Diffraction; Optical image
The content above is only an excerpt.
for your institution. Subscribe
To learn more about subscribing to AccessScience, or to request a no-risk trial of this award-winning scientific reference for your institution, fill in your information and a member of our Sales Team will contact you as soon as possible.
to your librarian. Recommend
Let your librarian know about the award-winning gateway to the most trustworthy and accurate scientific information.
About AccessScience
AccessScience provides the most accurate and trustworthy scientific information available.
Recognized as an award-winning gateway to scientific knowledge, AccessScience is an amazing online resource that contains high-quality reference material written specifically for students. Contributors include more than 10,000 highly qualified scientists and 46 Nobel Prize winners.
MORE THAN 8700 articles covering all major scientific disciplines and encompassing the McGraw-Hill Encyclopedia of Science & Technology and McGraw-Hill Yearbook of Science & Technology
115,000-PLUS definitions from the McGraw-Hill Dictionary of Scientific and Technical Terms
3000 biographies of notable scientific figures
MORE THAN 19,000 downloadable images and animations illustrating key topics
ENGAGING VIDEOS highlighting the life and work of award-winning scientists
SUGGESTIONS FOR FURTHER STUDY and additional readings to guide students to deeper understanding and research
LINKS TO CITABLE LITERATURE help students expand their knowledge using primary sources of information